
LLNL-JRNL-693607

Effect of Equilibration Time on Pu
Desorption from Goethite

J. Wong, M. Zavarin, J. Begg, A. B. Kersting, B. A.
Powell

June 1, 2016

Radiochimica Acta



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Author Title File Name Date Page 
Jennifer C. Wong,*,† 
Mavrik Zavarin,‡ James D. 
C. Begg,‡ Annie B. 
Kersting,‡ Brian A. 
Powell*,† 

Effect of Equilibration Time on Pu Desorption from Goethite Draft_Aging_18
_embedTIFF.doc
x 

31.05.2016 1 (17) 

 

Effect of Equilibration T ime on Pu Desorption from Goethite 1 

Effect of Equilibration Time on Pu Desorption from Goethite 2 

Jennifer C. Wong,*,† Mavrik Zavarin,‡ James D. C. Begg,‡ Annie B. Kersting,‡ Brian A. Powell*,† 3 

†Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 4 
29625, USA 5 

‡Glenn T . Seaborg Institute, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA 6 

*Corresponding authors: Brian A. Powell, 342 Computer Court, Anderson, SC 29625, USA, bpowell@clemson.edu; Jennifer C. Wong, 7 
jwong@clemson.edu. 8 

Received; accepted 9 

It has been suggested that strongly sorbing ions such as 10 
plutonium may become irreversibly bound to mineral 11 
surfaces over time which has implications for near- and 12 
far-field transport of Pu. Batch adsorption–desorption 13 
data were collected as a function of time and pH to 14 
study the surface stability of Pu on goethite. Pu(IV) was 15 
adsorbed to goethite over the pH range 4.2 to 6.6 for 16 
different periods of time (1, 6, 15, 34 and 116 days). 17 
Following adsorption, Pu was leached from the mineral 18 
surface with desferrioxamine B (DFOB), a complexant 19 
capable of effectively competing with the goethite 20 
surface for Pu. The amount of Pu desorbed from the 21 
goethite was found to vary as a function of the 22 
adsorption equilibration time, with less Pu removed 23 
from the goethite following longer adsorption periods. 24 
This effect was most pronounced at low pH. 25 
Logarithmic desorption distribution ratios for each 26 
adsorption equilibration time were fit to a pH-27 
dependent model. Model slopes decreased between 1 28 
and 116 days’ adsorption time, indicating that overall 29 
Pu(IV) surface stability on goethite surfaces becomes 30 
less dependent on pH with greater adsorption 31 
equilibration time. The combination of adsorption and 32 
desorption kinetic data suggest that non-redox aging 33 
processes affect Pu sorption behavior on goethite.  34 

Introduction 35 

The production and testing of nuclear weapons have 36 
resulted in a legacy of plutonium (Pu) contamination in the 37 
environment [1–4]. The mobility of Pu in the subsurface is 38 
of particular concern due to the long half-life of Pu (24,000 39 
years for 239Pu) and its radiotoxicity. Pu sorption to 40 
minerals is the main mechanism controlling its subsurface 41 
mobility. Sorption of Pu to iron oxides, of which goethite 42 
(α–FeOOH) is one of the most common, is of key interest 43 
because iron oxides are ubiquitous in the environment [5, 6] 44 
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and Pu exhibits a very high affinity for iron oxide surfaces. 45 
Although it is generally assumed that that Pu is relatively 46 
immobile due to its low solubility [7–10] and strong 47 
sorption of Pu(IV) to mineral surfaces [11], long-distance 48 
transport of Pu has been observed in association with 49 
colloids [12–14], suggesting formation of highly stable Pu 50 
surface complexes on colloids. At the Mayak site, colloid-51 
facilitated transport appeared to be driven by Pu association 52 
with iron oxide colloids [13], In sorption experiments with 53 
soluble Pu(V) and goethite colloids in natural groundwater, 54 
it was concluded that Pu desorption rates are much slower 55 
than adsorption rates [15, 16]. In acid leaching experiments, 56 
stabilization of sorbed nanocrystalline Pu on hematite was 57 
observed with increasing contact time [17]. Thus it is 58 
hypothesized that observations of colloid-facilitated 59 
transport are due to irreversible sorption or rate-limited 60 
desorption of Pu to colloids or rate-limited desorption of Pu 61 
from colloids [18, 19]. This hypothesis is supported by field 62 
studies in which long distance, colloid-facilitated transport 63 
of Pu has been observed [12, 13, 20].  64 
An irreversible reaction is an “exothermic reaction in which 65 
the activation energy for the reverse reaction is sufficiently 66 
large that the reaction proceeds only in the forward 67 
direction under practical conditions” [21]. When used in the 68 
context of sorption reactions, irreversibility is characterized 69 
by an inequality between adsorption and desorption 70 
distribution coefficients. However, sorption reactions which 71 
appear irreversible on short timescales (hours to days) may 72 
actually be reversible and simply have very slow rates of 73 
adsorption or desorption. In this case, as adsorption or 74 
desorption times are increased beyond typical laboratory 75 
timescales, the inequality between adsorption and 76 
desorption distribution coefficients may vanish. 77 
Aging is a “surface chemical process that follows the initial 78 
sorption reaction and causes changes in contaminant 79 
surface speciation over time” [22]. These changes in 80 
surface speciation could make the contaminant more stable 81 
on the surface. Aging is manifested by distribution 82 
coefficients which increase with contact time. As a result, 83 
the amount of contaminant which can be desorbed 84 
decreases with increasing contact time. Depending on the 85 
timescales of adsorption/desorption, aging can give the 86 
appearance of irreversible sorption. Thus, the irreversible 87 
adsorption attributed to colloid facilitated Pu transport at 88 
the Mayak Site [13] and the slow desorption rates observed 89 
in batch Pu goethite sorption experiments [15, 16] could be 90 
attributed to aging.  91 
Though several hypotheses regarding the underlying 92 
mechanisms of aging (or irreversible sorption) have been 93 
proposed, few have been explicitly proven. The sorbate 94 
may undergo a change in surface speciation over time, 95 
either by the formation of shorter and stronger bonds with 96 
the surface or by the physical transfer of the sorbate to sites 97 
of higher reactivity [23–26]. As goethite is a microporous 98 
mineral [27, 28], aging on goethite may also occur by 99 
aqueous diffusion into micropores followed by sorption to 100 
interior sites [17, 23–26, 29–32]. Surface precipitation of 101 
the sorbate has been suggested as an aging process [24, 25, 102 
31]. Another proposed aging process is surface exchange, 103 
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where a sorbate atom exchanges with an iron atom in the 104 
mineral lattice and becomes structurally incorporated [33]. 105 
Incorporation of the sorbate as a result of mineral 106 
recrystallization has also been identified as an aging 107 
process [26, 31, 32, 34]. Surface mediated reduction of 108 
Pu(V) to Pu(IV), which has been observed on iron oxide 109 
and other mineral surfaces [35–39] may also exhibit the 110 
characteristics of an aging process. In cases where 111 
researchers have observed a rapid sorption step followed by 112 
a second, slow sorption step, the second reaction has been 113 
attributed to diffusion of Pu into micropores or surface 114 
mediated reduction of Pu(V) [35, 40].  115 
Regardless of the proposed aging mechanisms discussed 116 
above, numerical descriptions of aging are typically 117 
parameterized as two consecutive reactions: an initial 118 
sorption reaction followed by a second aging reaction. This 119 
consideration of multiple kinetic sites is necessary to 120 
evaluate aging processes. Since sorption of ions to the 121 
initial sites appears to be rapid, the rate of the second 122 
reaction should be the rate limiting step. Thus, the rate of 123 
slow uptake commonly observed in the second phase of a 124 
kinetic sorption experiment could be a proxy of the aging 125 
process on the surface.  126 

Pu Redox Behavior and Sorption on Iron 127 
Oxides 128 

Plutonium can exist in the +III, +IV, +V and +VI valence 129 
states simultaneously under natural conditions [41, 42]. At 130 
moderate pH and Eh, Pu(IV) and Pu(V) are the dominant 131 
oxidation states, whereas Pu(III) and Pu(VI) are generally 132 
only stable under anoxic or oxic conditions, respectively 133 
[43]. Due to the profound insolubility of Pu(IV), it is 134 
commonly found in ligand-free solutions as a precipitate or 135 
sorbed to solid phases. Conversely, Pu(V) is more soluble 136 
and the stable oxidation state of aqueous Pu in dilute salt 137 
solutions and seawater [44, 45]. Therefore, a common 138 
observation is that Pu(V) is the dominant aqueous phase 139 
oxidation state and Pu(IV) is the dominant oxidation state 140 
in solid phases. This is illustrated by the solubility of 141 
PuO2(s) phases under oxic conditions where the solubility 142 
limit is approximately 10-8 to 10-6 M with the aqueous 143 
phase dominated by Pu(V) [7, 46–48].  144 
The distribution of Pu(IV) and Pu(V) oxidation states 145 
primarily between solid and aqueous, phases, respectively, 146 
has also been observed in sorption experiments [35, 36, 38–147 
40, 49–51]. The sorption edges of Pu(IV) and Pu(V) 148 
correlate with the hydrolysis of Pu in these oxidation states 149 
[7–10, 35, 36]. On goethite, the sorption edge for Pu(IV), 150 
which begins to hydrolyze [7–10, 52] to Pu(OH)x

4-x species 151 
at pH 1, is in the pH range 3 to 5 [35, 52]. After 24 hours, 152 
the sorption edge for Pu(V) is in the pH range 6 to 8, which 153 
is consistent with the expected hydrolysis of Pu(V) at pH 154 
<9.7 [35, 52]. However, Pu(V) undergoes surface mediated 155 
reduction to Pu(IV) on iron oxides, leading to a shift in the 156 
sorption edge to a lower pH over time [35–39]. Thus, if 157 
Pu(V) is present in the pH range 3 to 8 the fraction of 158 
sorbed Pu is observed to increase over time [35–39]. The 159 
dominance of aqueous Pu(V) and its reduction implies that 160 
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reduction of Pu(V) to Pu(IV) is a surface mediated process. 161 
Few desorption studies have been performed which monitor 162 
the aqueous oxidation state of desorbed Pu. Thus, it is 163 
unclear if desorption is coupled with a surface mediated 164 
oxidation step. Using PuO2(s) solubility studies as a proxy 165 
for desorption studies, similar dominance of aqueous Pu(V) 166 
has been observed [46–48].  167 
Because multiple Pu oxidation states may be present 168 
simultaneously, it is necessary to know the distribution of 169 
sorbed and aqueous oxidation states in sorption experiments 170 
[53]. One method to simplify the system is to add an 171 
organic ligand which can stabilize aqueous Pu(IV) and 172 
avoid the formation of Pu(V). In this case, the amount of Pu 173 
which can be desorbed from the mineral surface can be 174 
related to the relative stability of the Pu(IV)–surface and the 175 
Pu(IV)–ligand complexes without needing to address the 176 
additional complexity of Pu(IV) oxidation.  177 
Desferrioxamine B (DFOB) can be used to stabilize Pu(IV) 178 
as the dominant aqueous oxidation state across a wide range 179 
of experimental conditions (pH, concentration, atmospheric 180 
conditions; Fig. A1) [54, 55]. In addition, the aqueous 181 
Pu(IV)–DFOB complex can effectively promote Pu(IV) 182 
desorption from goethite. Equilibrium speciation 183 
calculations under atmospheric conditions show that 184 
Pu(IV)–DFOB complexes dominate over Pu(OH)x

4-x 185 
species between pH 4 and 8 at concentrations of 10-10 M 186 
Pu(IV) and 1.7 µM DFOB (Fig. A2). Under these 187 
conditions, the high stability of Pu(IV)–DFOB complexes 188 
are expected to thermodynamically maintain the dominance 189 
of the aqueous Pu(IV)–DFOB complexes and minimize 190 
Pu(IV) oxidation to Pu(V) under atmospheric conditions 191 
(Fig. A1).  192 
In this work, an alternative approach to examining aging 193 
has been utilized wherein desorption of Pu is monitored 194 
using a strong aqueous complexant (i.e. DFOB) that 195 
promotes Pu desorption and controls the Pu oxidation state. 196 
Adsorption equilibration periods as long as 4 months were 197 
examined to test the existence of very slow aging processes. 198 
Desorption was carried out after a 34 day equilibration 199 
period for the same reasons. The overall surface stability of 200 
Pu as a function of adsorption equilibration time was 201 
quantified by examining the linear relationship between 202 
logarithmic distributions ratios (log Rd) and pH values.  203 

Materials and Methods 204 

Acids and bases used were Aristar Plus grade. Cyclohexane 205 
(Alpha Aesar) and sodium chloride used were ACS reagent 206 
grade. All water used was distilled and deionized with 207 
resistivity >18 MΩ·cm. A DFOB stock solution was 208 
prepared at a concentration of 1.7 mM by dissolving 209 
desferoxamine mesylate salt (Sigma Aldrich) in deionized 210 
water.  211 
The goethite was prepared as described previously [22] and 212 
had a BET surface area of 42 m2/g. A goethite stock 213 
suspension of 8.0 g/L was prepared by suspending goethite 214 
in 100 mL deionized water, centrifuging to a particle size 215 
cutoff of 100 nm, and replacing supernatant with fresh 216 
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deionized water. This washing step was performed three 217 
times to remove <100 nm goethite fines. The final goethite 218 
stock was suspended in 100 mL 10 mM NaCl. 219 
Concentrations of 238Pu were measured by liquid 220 
scintillation counting. Samples were prepared for alpha 221 
spectroscopic analysis with Optiphase Hisafe 3 scintillation 222 
cocktail (Perkin Elmer) and counted with alpha/beta 223 
discrimination using a Wallac model 1415, Hidex 300SL, 224 
or Perkin Elmer Tri-Carb 2910 TR liquid scintillation 225 
counter. For each instrument, Pu stock solutions were 226 
measured so that aqueous Pu concentrations could be 227 
calculated as a fraction of Pu added to samples.  228 
Concentrations of 238Pu were measured by liquid 229 
scintillation counting. Samples were prepared for alpha 230 
spectroscopic analysis with Optiphase Hisafe 3 scintillation 231 
cocktail (Perkin Elmer) and counted with alpha/beta 232 
discrimination using a Wallac model 1415, Hidex 300SL, 233 
or Perkin Elmer Tri-Carb 2910 TR liquid scintillation 234 
counter. For each instrument, Pu stock solutions were 235 
measured so that aqueous Pu concentrations could be 236 
calculated as a fraction of Pu added to samples.  237 

Pu Stock Solutions and Oxidation State 238 
Analyis 239 

A stock solution of 6.6 × 10-8 M 238Pu(IV) was prepared by 240 
evaporating 238Pu(V) stock (Isotope Products) in 1 M HNO3 241 
and redissolving in 0.1 M HCl. A Pu–DFOB stock solution 242 
was prepared by adding DFOB to 1 mL Pu(IV) stock 243 
solution to yield 3.3 × 10-5 M DFOB and 5.9 × 10-8 M Pu. 244 
Because the Pu concentrations in stock solutions and 245 
samples were too low to use direct observation techniques 246 
(e.g. UV-Vis spectroscopy), well-established co-247 
precipitation and solvent extraction techniques were used to 248 
determine Pu oxidation state. The oxidation state of the 249 
DFOB-free Pu(IV) stock solution was verified to be 91.9 ± 250 
0.6 % Pu(IV) by lanthanum fluoride co-precipitation [56, 251 
57]. The oxidation state of some DFOB-free samples was 252 
measured by organic solvent extraction with 0.025 M 1-253 
phenyl-3-methyl-4-benzoyl-pyrazole-5-one (PMBP; Tokyo 254 
Chemistry Industry Co., Ltd.) in cyclohexane, which 255 
extracts Pu(IV) into the organic phase, leaving oxidized Pu 256 
in the aqueous phase [10, 58]. Aqueous and organic 257 
fractions of Pu were measured by liquid scintillation 258 
counting with alpha/beta discrimination. The Pu oxidation 259 
state of the solutions containing DFOB could not be 260 
verified due to interference of DFOB with the co-261 
precipitation reaction and solvent extraction. The oxidation 262 
state of Pu in the Pu–DFOB stock solution is assumed to be 263 
Pu(IV) based on the initial Pu(IV) state of the stock 264 
solution and  the strong complexation of DFOB with 265 
Pu(IV) [54].  266 

Pu Batch Adsorption–Desorption in the 267 
Presence and Absence of DFOB 268 

An adsorption–desorption batch experiment with Pu was 269 
performed on goethite suspensions as a function of pH to 270 
establish that the presence of DFOB will limit Pu 271 
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adsorption and enhance Pu desorption compared to a 272 
DFOB-free solution. Solutions of 10 mM NaCl and 0.075 273 
g/L goethite were prepared in 15 mL polyethylene tubes. 274 
After addition of Pu from Pu(IV) or Pu–DFOB stock 275 
solutions, the final Pu concentration of samples was ≈1.7 × 276 
10-10 M for DFOB-containing samples and ≈1.9 × 10-10 M 277 
for DFOB-free samples. The total Pu added to each sample 278 
from stock solutions was determined gravimetrically. 279 
Additional DFOB was added to DFOB-containing samples 280 
from the DFOB stock solution to yield 1.7 μM DFOB. 281 
Sample pH values were adjusted to 6 and 8 with dilute HCl 282 
and NaOH. During adsorption, aqueous Pu was measured at 283 
2 hours, 5 hours, 1, 3, 10, and 25 days. Then, the 284 
supernatant was replaced with either 1.7 μM DFOB or 285 
DFOB-free solution, and aqueous Pu was monitored during 286 
desorption (see Supporting Information). Sampling 287 
consisted of transferring a 1.4 mL homogenous aliquot to a 288 
microcentrifuge tube, centrifugation at 8000 rpm for 20 289 
minutes (Beckman and Coulter Allegra 22R centrifuge with 290 
F2402 rotor) which is calculated to remove particles >100 291 
nm based on Stoke’s Law, and measuring the Pu 292 
concentration in the supernatant. First-order adsorption rate 293 
constants were estimated by fitting measurements spanning 294 
2 hours – 25 days.  295 

Effect of Adsorption Equilibrium Time on 296 
Pu(IV) Surface Stability 297 

Preliminary experiments suggested that Pu(IV) desorption 298 
behavior was dependent on adsorption time. To test the 299 
effect of adsorption time on desorption behavior, DFOB-300 
free solutions of 10 mM NaCl and 0.10 g/L goethite were 301 
prepared in 1.5 mL microcentrifuge tubes in duplicate. The 302 
Pu(IV) stock solution was spiked into each sample to yield 303 
≈1.2 × 10-10 M Pu. The total Pu added to each sample from 304 
stock solutions was determined gravimetrically. The 305 
samples were initially adjusted to pH 4, 5, 6, 7 and 8 using 306 
dilute HCl and NaOH, but allowed to drift during the 307 
adsorption period. Most of the pH drift occurred in the first 308 
day. The final pH range spanned 4.2 to 6.6. 309 
Samples were allowed to equilibrate for 1, 6, 15, 34 and 310 
116 days. Following the adsorption step, samples were 311 
centrifuged to remove particles >100 nm from the 312 
supernatant and the Pu concentration in the supernatant was 313 
measured. Then, the supernatant was quantitatively 314 
replaced with a 1.7 µM DFOB solution adjusted to pH 4, 5, 315 
6, 7, and 8 using dilute HCl and NaOH. Desorption of Pu 316 
from each sample was allowed to occur for 34 days for all 317 
samples, regardless of the initial equilibration time. Finally, 318 
samples were centrifuged to remove particles >100 nm 319 
from the supernatant and the Pu concentration in the 320 
supernatant was measured.  321 

Use of DFOB in Pu–Goethite Sorption 322 
Experiments 323 

DFOB was used to enhance desorption of Pu and to 324 
stabilize Pu(IV) as the dominant aqueous oxidation state. 325 
Although DFOB strongly complexes Fe(III) in aqueous 326 
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solution, DFOB has been shown to interact weakly with the 327 
goethite surface at pH 3 to 9 due to electrostatic repulsion 328 
of the cationic DFOB and also to steric hindrance [59–61]. 329 
Based on previous DFOB–goethite sorption isotherms [59, 330 
60] at pH 5 and 6.6, it is estimated that for 1.7 μM total 331 
DFOB and 0.1 g/L goethite only 2–6 % of DFOB sorbs (see 332 
Appendix). Furthermore, despite the formation of strong 333 
Fe(III)–DFOB complexes, low dissolution rates of 0.01 to 334 
0.02 µmol/(g·h) are observed for goethite in the presence of 335 
DFOB [60, 62]. Therefore, as will be discussed below, Pu–336 
ligand complexation rather than goethite dissolution is the 337 
driving mechanism for release of sorbed Pu. The 338 
dissolution of goethite was tested by measuring aqueous 339 
iron concentrations in the presence of DFOB by Inductively 340 
Coupled Plasma Mass Spectrometry, (ICP-MS, Thermo 341 
Scientific XSeries 2).  342 
Because DFOB interacts weakly with goethite surfaces, 343 
formation of ternary goethite–DFOB–Pu surface complexes 344 
is expected to be minimal. As a result, DFOB is expected to 345 
have little effect on Pu surface speciation and only facilitate 346 
desorption of Pu. For the experimental conditions of this 347 
work, our conceptual model is that Pu sorption to goethite 348 
may be treated as a binary system of ≡FeOH–Pu(IV) 349 
surface complexes and aqueous Pu(IV)–DFOB complexes. 350 
Thus, differences in measured distribution ratios can be 351 
attributed directly to changes in the binding energy of the 352 
≡FeOH–Pu(IV) surface complex.  353 

Calculations 354 

All data are presented as percent sorbed, percent desorbed, 355 
or a distribution ratio. Distribution ratios, Rd (mL/g), were 356 
calculated from the aqueous Pu concentration, CPu,aq 357 
(mol/L), and the total Pu added to each sample, CPu,total 358 
(mol/L), according to Equation 1, where SS (g/L) represents 359 
the suspended solids concentration 360 

Rd = CPu,total - CPu,aq
CPu,aq

 · 1000

SS
 (1) 361 

Distribution ratios are not equivalent to the more traditional 362 
distribution coefficient, Kd, because in the former case, an 363 
equilibrium condition is not assumed. For adsorption 364 
measurements, the percent sorbed was calculated based on 365 
the total Pu added at the beginning of the experiment. For 366 
desorption measurements, the percent (de)sorbed was 367 
calculated based on the estimated total Pu remaining in 368 
samples after the supernatant was exchanged.  369 
Least-squares regression fitting was used to estimate the 370 
first-order adsorption rate constants, k f (s-1), according to 371 
Equation 2, where t is adsorption time in seconds. During 372 
fitting, the aqueous Pu concentration at time zero, CPu,aq(0), 373 
and k f were treated as adjustable parameters.  374 

CPu,aq(t) = CPu,aq(0)e-kft (2) 375 
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Results and Discussion 376 

Pu Batch Adsorption–Desorption in the 377 
Presence and Absence of DFOB 378 

In all samples, there is a rapid Pu adsorption step that 379 
occurs within the first 2 hours (Fig. 1). After 2 hours, the 380 
extent of Pu sorption tends to increase slowly for at least 25 381 
days in DFOB and DFOB-free solutions. Thus, it appears 382 
that adsorption aging effects exist both in the presence and 383 
absence of DFOB.  384 

 385 
Fig. 1. Adsorption of Pu on a 0.075 g/L goethite suspension with 386 
10 mM NaCl for ionic strength control. Pu was initially added as 387 
Pu(IV). Solutions contained 1.7 µM DFOB or were DFOB-free. 388 
Lines indicate first-order rate models fit  to the data. Error bars 389 
represent two standard deviations of measurement uncertainty 390 
derived from counting statistics. The first  data point was collected 391 
after a 2 hour adsorption time period. 392 

Between 2 hours and 25 days, the percent Pu sorbed in 393 
DFOB-containing samples increases from 9.7 ± 0.5 % to 394 
27.7 ± 0.8 % and from 22.6 ± 0.4 % to 43.9 ± 0.6 % at pH 6 395 
and 8, respectively. As a result of DFOB stabilizing Pu(IV) 396 
in solution, surface mediated reduction of Pu(V) should not 397 
be a relevant aging mechanism in these samples. Thus, we 398 
attribute the increase in sorption to non-redox aging effects. 399 
The percent Pu sorbed for the DFOB-free sample increases 400 
between 2 hours and 25 days from 87.74 ± 0.16 % to 98.40 401 
± 0.07 % at pH 8. It is noteworthy that in the absence of 402 
DFOB, Pu(IV)/Pu(V) redox transformations may influence 403 
the partitioning of Pu. Oxidation state analysis of aqueous 404 
Pu in DFOB-free samples with solvent extraction confirms 405 
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that Pu(V/VI) is the stable aqueous form of Pu in these 406 
samples. In samples adsorbed for 25 days at pH 6 and 8, 97 407 
± 7 % and 100 ± 12 % of supernatant Pu is in the V/VI 408 
oxidation state, respectively. However, the surface area 409 
normalized adsorption rate observed at pH 8 (1.08 ± 0.10 × 410 
10-3 L/(m2∙h)) is much lower the published rate of surface 411 
mediated reduction of Pu(V) (2.3 ± 0.7 × 10-2 L/(m2∙h)) 412 
[38]. Thus, despite the likely occurrence of redox 413 
transformations at early time (days), some process other 414 
than surface mediated reduction of Pu(V) is responsible for 415 
observed aging behavior in the presence and absence of 416 
DFOB over the long term.  417 
The presence of DFOB causes a marked decrease in the 418 
percent of sorbed Pu (Fig. 1), and greater sorption is 419 
observed at pH 8 relative to pH 6. Aqueous equilibrium 420 
speciation modeling indicates Pu speciation in 1.7 µM 421 
DFOB at pH 6 and 8 under atmospheric conditions is 422 
dominated by PuH2(DFOB)2

2+ rather than Pu(OH)x
4-x 423 

species (Figs. A1 and A2). Because ternary goethite–424 
DFOB–Pu complexes are not expected to form, the slightly 425 
greater sorption at pH 8 relative to pH 6 is likely due to the 426 
increased stability of Pu(IV)–goethite surface complexes 427 
with increasing pH.  428 
Dissolved iron measurements in the presence of DFOB 429 
were below the ICP-MS detection limit of 2.8 μM. 430 
However, given that the DFOB concentration is only 1.7 431 
µM, competition between Fe and Pu for DFOB may have 432 
occurred in these samples. Nevertheless, the enhanced 433 
aqueous concentration of Pu in the presence of DFOB 434 
indicates that the Pu–DFOB complexes can form despite a 435 
portion of DFOB forming Fe–DFOB complexes. Some Pu 436 
desorption as a result of goethite dissolution may have 437 
occurred. However, the amount of goethite surface area 438 
available for Pu sorption did not decrease over the course of 439 
these experiments. Thus, we can conclude that formation of 440 
soluble Pu-DFOB complexes is the dominant mechanism 441 
responsible for the higher aqueous Pu concentrations in the 442 
presence of DFOB.  443 
After 25 days’ adsorption, the samples were phase 444 
separated and supernatants exchanged for fresh Pu-free 445 
solutions of the same pH and DFOB concentration as in the 446 
initial adsorption step. In less than 3 hours, desorption was 447 
greater in DFOB samples than DFOB-free samples (Fig. 448 
A4). At 3 hours, the percent of Pu remaining sorbed in 449 
DFOB solutions was 74.8 ± 0.4 % and 85.2 ± 0.30 % at pH 450 
6 and 8, respectively. In contrast, the percent of Pu 451 
remaining sorbed in DFOB-free solutions was 96.44 ± 0.11 452 
% and 97.3 ± 0.09 % at pH 6 and 8, respectively. 453 
Importantly, in the presence of DFOB, Pu desorption 454 
experiments appear to have reached equilibrium after 18 455 
hours. In the DFOB-free samples, the pH 8 Pu desorption 456 
experiment neared equilibrium by three days while the pH 6 457 
experiment approached equilibrium much more slowly. 458 
Thus, it is apparent that DFOB can effectively facilitate and 459 
accelerate Pu desorption from goethite and that desorption 460 
equilibrium is achieved on the timescale of days.  461 
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Results of Varying Adsorption Equilibrium 462 
Time 463 

In order to test the effect of adsorption equilibration time 464 
(in the absence of DFOB) on Pu surface stability, a batch 465 
adsorption–desorption experiment was conducted on 466 
goethite suspensions with varying adsorption times in 467 
DFOB-free solution and a constant desorption time of 34 468 
days in 1.7 µM DFOB solution. The DFOB-free adsorption 469 
data (Fig. 2) support the conceptual model of Pu aging on 470 
the goethite surface. This aging is seen as a steady shift in 471 
the sorption edge towards lower pH values for up to 116 472 
days. This is in contrast to previously observed rates of 473 
surface mediated reduction, where greater than 90% of 474 
Pu(V) reduction was observed within 24 hours [38]. Thus, 475 
the observed aging is likely the result of a mechanism other 476 
than surface mediated reduction occurring on the goethite 477 
surface.  478 

 479 
Fig. 2. Logarithmic adsorption distribution ratios (Rd) for Pu on 480 
0.10 g/L goethite suspensions as a function of pH and time. Total 481 
Pu concentration is 1.2 × 10-10 M, and ionic strength was 482 
controlled with 10 mM NaCl. Error bars indicate two standard 483 
deviations of measurement uncertainty derived from counting 484 
statistics.  485 

The effect of aging on Pu desorption was tested by 486 
performing a 34 day desorption in 1.7 µM DFOB solution 487 
on each of the adsorption samples. The 34 days provided 488 
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ample time for samples to reach equilibrium (Fig. A4). The 489 
decrease in percent DFOB-desorbable Pu with increasing 490 
adsorption time is indicative of Pu stabilization on the 491 
goethite surface (Fig. 3). During DFOB-free adsorption at 492 
pH 4, we can expect only trace amounts of Pu(V) to be 493 
sorbed to the goethite surface [35]. Thus, aging behavior at 494 
pH 4 must be the result of Pu(IV) stabilization on the 495 
goethite surface and not Pu(IV)/(V) redox transformations.  496 

 497 
Fig. 3. The percent of Pu desorbed is plotted against adsorption 498 
equilibration time. Samples initially contained 1.2 × 10-10 M total 499 
Pu before supernatant replacement and desorption with 1.7 µM 500 
DFOB for 34 days. The mean pH values of each sample group are 501 
shown in the legend. Goethite suspension concentration was 0.10 502 
g/L, and ionic strength was controlled with 10 mM NaCl. Error 503 
bars indicate the standard deviation of duplicates.  504 

The aging behavior observed in the desorption data is more 505 
pronounced at lower pH values. At pH 4.2, the percent Pu 506 
desorbed decreases from 76.8 ± 1.1 % to 29.8 ± 2.1 % 507 
between 1 and 116 days of adsorption equilibration, and, at 508 
pH 6.6, the percent of Pu desorbed decreases from 46 ± 6 % 509 
to 25 ± 4 %, for the same periods of adsorption. The greater 510 
change over time in the percent Pu desorbed suggests that 511 
aging is pH-dependent. The pH-dependence may reflect the 512 
presence of a strongly sorbing (and less labile) form of Pu 513 
on the goethite surface at high pH values. However, the 514 
underlying reason for the pH dependence cannot be 515 
identified with these data.  516 
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To further evaluate the pH- and time- dependence of 517 
desorption, logarithmic desorption Rd values for each 518 
adsorption equilibration time were plotted against pH (Fig. 519 
4) and were fit with a linear model which considers a pH-520 
dependent and a pH-independent term (Eq. 3).  521 

logRd  = slope × pH + intercept (3) 522 
For samples adsorbed for 1 to 34 days, the estimated slopes 523 
range from 0.2 to 0.32, while at 116 days, the slope 524 
decreases to 0.06. These results suggest that Pu surface 525 
stability becomes less pH-dependent with increasing 526 
adsorption equilibration time. It also suggests that a pH-527 
independent Rd value may describe the Pu desorption from 528 
goethite at longer, environmentally relevant timescales.  529 

 530 
Fig. 4. Logarithmic desorption distribution ratios (Rd) for Pu 531 
resulting from adsorption in DFOB-free solution for various 532 
equilibration times (indicated), supernatant replacement, and 533 
desorption in 1.7 μM DFOB solution for 34 days. Total Pu was 534 
originally 1.2 × 10-10 M before supernatant replacement. Goethite 535 
suspension concentration was 0.10 g/L, and ionic strength was 536 
controlled with 10 mM NaCl. Error bars indicate two standard 537 
deviations of measurement uncertainty derived from counting 538 
statistics. Shown are linear models which consider a pH-539 
dependent and a pH-independent term.  540 

The pH-dependent aging and time-dependent desorption 541 
behavior in the presence and absence of DFOB can be used 542 
to identify the aging processes that may play a role in Pu 543 
sorption behavior. Pu adsorption data in the presence of 544 
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DFOB suggest that a non-redox, aging mechanism plays a 545 
role in stabilizing Pu(IV) on the goethite surface. In the 546 
absence of DFOB, the pH- and time-dependent adsorption 547 
rates are slower than previously reported rates of surface 548 
mediated Pu(V) reduction on goethite. The initial Pu(IV) 549 
stock solution contained ≈10% Pu(V). Thus, while redox 550 
transformations likely played a role in Pu adsorption rates 551 
at early times (days), the observed aging on a timescale of 552 
weeks is not consistent with surface mediated reduction 553 
processes. The decrease in Pu desorption as a function of 554 
equilibration time, particularly at pH 4, provides clear 555 
evidence that Pu(IV) sorbed to goethite becomes more 556 
stable with time. At higher pH values, the effect is less 557 
pronounced, suggesting a pH-dependence to this aging 558 
process.  559 

Implications of Aging on Pu Subsurface 560 
Migration 561 

The aging phenomena observed in this work may impact 562 
the fate and transport of Pu in the environment. As natural 563 
soils contaminated with Pu age, the strength of Pu sorption 564 
to bulk soil will increase with increasing time and make Pu 565 
less labile. Importantly, the aging process has been shown 566 
to include non-redox mechanisms. Furthermore, Rd values 567 
based on short term adsorption or desorption experiments 568 
will underestimate long term equilibrium Kd values, and 569 
lead to overestimated aqueous Pu transport distances. 570 
Conversely, if Pu is sorbed to mobile colloids, aging may 571 
result in formation of stronger Pu–colloid associations and, 572 
thus, lead to greater colloid-facilitated Pu transport 573 
distances. These aging phenomena support the frequent 574 
observations of colloid-facilitated Pu transport [12, 13] 575 
wherein Pu can be transported significant distances 576 
adsorbed to the colloid on a timescale of years. 577 
Furthermore, the pH dependency of aging implies that the 578 
magnitude of this effect will be dependent on the local 579 
geochemical conditions but will occur regardless of 580 
whether Pu redox transformation is prevalent.  581 
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Pu Speciation in the Presence of DFOB (Fig. A1) 

In the presence of DFOB, Pu(IV) species in the form of PuDFOB2+, PuH2(DFOB)2
2+

, and Pu(OH)4(aq) dominate a large 
range of pH and Eh conditions.  
 

 
Fig. A1. Equilibrium speciation for 10-10 M Pu (A) in the absence of DFOB and (B) in the presence of 1.7 μM DFOB. PuO2 minerals 
suppressed and 10 mM NaCl is included. Constants are from refs [1, 2]. (Geochemist’s Workbench Standard 8.0).  
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Pu Speciation in the Presence of DFOB and Fe(III) (Fig. A2) 

In the presence of 1.7 μM DFOB and 1.0 μM Fe3+, Pu(IV)–DFOB species in the form of PuDFOB2+ and 
PuH2(DFOB)2

2+
 dominate over Pu(OH)x

4-x species at experimentally relevant pH values.  

 
Fig. A2. (A) Equilibrium speciation of 10-10 M Pu(IV) in the presence of 1.7 μM DFOB, 1.0 μM Fe3+ and 10 mM NaCl. (B) Total 
fractions Pu(OH)x

4-x and Pu(IV)–DFOB species are shown. Constants are from refs [1–3].  
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Isotherms for DFOB Sorption to Goethite (Fig. A3) 

The DFOB surface coverage was estimated by using published sorption isotherms [4, 5] to extrapolate to 1.7 μM total 
DFOB and 0.10 g/L goethite. Based on the Langmuir isotherm model (Eq. 1) shown in Fig. A3, a conservative estimate 
for the amount of DFOB sorbed to goethite is 1.1 μmol/g or 6.2%. The Langmuir isotherm model indicated a maximum 
surface excess, nmax, of 1.2 ± 0.2 μmol/g and Langmuir parameter, KL, of 3.7 ± 2.1 μM. From linear isotherm fits to the 
lowest concentration measurements from Kraemer et al. (1999) and Cheah et al. (2003), the amount of DFOB sorbed to 
goethite is 0.7 μmol/g and 0.3 μmol/g or 4% and 2%, respectively.  
Langmuir Equation: 

 nDFOB = nmax
KLC

KLC + 1
 (1) 

 
Fig. A3. The isotherm from Kraemer et al. (1999) is measured at pH 6.6 for 13 g/L goethite, 10 mM NaClO4, and 5 mM MOPS 
buffer. The isotherm from Cheah et al. (2003) is measured at pH 5 for 10 g/L goethite, 10 mM NaClO4, and 5 mM MOPS buffer. The 
Langmuir model is from Cheah et al. (2003). 
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Estimated Dissolved Iron in the Presence of DFOB 

The iron dissolution rate was previously measured5 at pH 6.5, in the presence of 0.5 g/L goethite, 240 μM DFOB, 5mM 
MOPS buffer, and 10 mM NaClO4. The surface area of the goethite used by Kraemer et al. (1999) was 35 ± 3 m2/g as 
determined by the static BET method.  

 0.02 μmol

g∙h
 × 0.1 g 

L
(goethite) × 24 h

day
 × 25 days = 1.2 μmol/L (2) 
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Batch Adsorption–Desorption Experiment in the Presence and Absence of DFOB (Fig. A4, 
Tables A1–A3) 

Solutions of 10 mM NaCl and 0.075 g/L synthetic goethite were prepared in 15 mL polyethylene tubes. After addition 
of Pu from Pu(IV) or Pu–DFOB stock solutions, the final Pu concentration of samples was 1.7 × 10-10 M for DFOB-
containing samples and 1.9 × 10-10 M for DFOB-free samples. Additional DFOB was added to DFOB-containing 
samples from the DFOB stock solution to yield 1.7 μM DFOB. Samples were adjusted to pH 6 and 8 with dilute HCl 
and NaOH. After 25 days’ adsorption, experiments were phase separated and supernatants exchanged for fresh Pu-free 
solutions of the same pH and DFOB concentration. During desorption, aqueous Pu was measured at 3 hours, 5 hours, 
18 hours, 3 days, and 12 days.  

Table A1. Percent Pu sorbed during adsorption step 

DFOB 
Conc. (μM) 

pH 2 hours 5 hours 1 day 3 days 10 days 25 days 

0.0 6 84.9 ± 0.4 82.1 ± 0.4 71.8 ± 0.5 70.2 ± 0.5 79.8 ± 0.4 83.3 ± 0.4 
0.0 8 87.74 ± 0.3 87.28 ± 0.3 89.42 ± 0.3 92.8 ± 0.3 96.04 ± 0.20 98.40 ± 0.14 
1.7 6 9.7 ± 1.0 10.1 ± 1.0 21.7 ± 0.9 8.7 ± 1.0 23.3 ± 0.9 27.7 ± 1.5 
1.7 8 22.6 ± 0.9 30.6 ± 0.8 24.3 ± 0.9 26.8 ± 0.9 38.5 ±0.8 43.9 ± 1.2 

Table A2. Estimated First Order Adsorption Rate Constants (s-1). 

pH DFOB-free 1.7 μM DFOB 
6 9 ± 16 × 10-8 9 ± 4 ×10-8 
8 9.4 ± 0.9 ×10-7 1.4 ± 0.8 ×10-7 
 

 
Fig. A4. The percent of Pu sorbed is plotted against t ime for Pu desorption from 0.075 g/L goethite suspensions with 10 mM NaCl 
for ionic strength control. Pu was initially added as Pu(IV) to samples containing 1.7 μM DFOB and DFOB-free solutions. Error bars 
represent two standard deviations of measurement uncertainty derived from counting statistics. The first  data point was collected 
after a 3 hour desorption time period. 

Table A3. Percent Pu sorbed during desorption step 
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DFOB 
Conc. (μM) 

pH 3 hours 5 hours 18 hours 3 days 12 days 

0.0 6 96.44 ± 0.22 95.41 ± 0.24 88.1 ±0.4 76.9 ± 0.5 74.0 ± 0.5 
0.0 8 97.32 ± 0.17 96.90 ± 0.18 94.30 ± 0.24 93.13 ±0.25 92.1 ±0.3 
1.7 6 74.8 ± 1.0 72.6 ± 1.0 64.3 ± 1.1 61.1 ± 1.2 70.2 ± 1.0 
1.7 8 85.2 ± 0.6 83.5 ± 0.6 75.7 ± 0.7 73.4 ± 0.8 75.8 ± 0.7 
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Batch Experiments with Varying Adsorption Equilibration Time: Adsorption Measurements 
(Fig. A5) 

 
Fig. A5. Logarithmic adsorption distribution ratios (Rd) for Pu on 0.10 g/L goethite suspensions as a function of pH and time. Total 
Pu concentration is 1.2 × 10-10 M, and ionic strength was controlled with 10 mM NaCl. Error bars indicate two standard deviations of 
measurement uncertainty derived from counting statistics.  
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HR-TEM Images of Goethite Micropores (Fig. A6) 

 
Fig. A6. A high resolution tunneling electron microscope image of a thin section showing goethite laths cut perpendicular to the c-
axis. Arrows indicate micropores occurring at the boundaries of crystallite domains. Republished with permission of the 
Mineralogical Society (Great Britain), from Schwertmann, U.: The Influence of Aluminum on Iron Oxides: IX. Dissolution of Al-
Goethites in 6 M HCl. Clay Minerals 19, 9–19 (1984).  
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